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Preface 

As an outgrowth of the advancement in modern control theory during the 
past 20 years, dynamic modeling and analysis of economic systems has 
become an important subject in the study of economic theory. Recent 
developments in dynamic utility, economic planning, and profit optimiza
tion, for example, have been greatly influenced by results in optimal 
control, stabilization, estimation, optimization under conflicts, multi
criteria optimization, control of large-scale systems, etc. 

The great success that has been achieved so far in utilizing modern 
control theory in economic systems should be attributed to the effort of 
control theorists as well as economists. Collaboration between the two 
groups of researchers has proven to be most successful in many instances; 
nevertheless, the gap between them has existed for some time. Whereas a 
control theorist frequently sets up a mathematically feasible model to 
obtain results that permit economic interpretations, an economist is 
concerned more with the fidelity of the model in representing a real
world problem, and results that are obtained (through possibly less 
mathematical analysis) are due largely to economic insight. 

The papers appearing in this volume are divided into three parts. In 
Part I there are five papers on the application of control theory to 
economic planning. Part II contains five papers on exploration, exploita
tion, and pricing of extractive natural resources. Finally, in Part III, some 
recent advances in large-scale systems and decentralized control appear. 

These papers are contributions from control theorists and econom
ists. Each paper presents its own perspective of future developments in 
dynamic economic theory. It is hoped that this collection will help 
stimulate interaction between the control-theoretic and the economically 
oriented approaches and that the volume will be of interest to researchers 
in applied mathematics, economics, management sciences, etc. It is also 
hoped that this collection will provide a periscopic view of some recent 
progress in mathematical economics. 
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viii Preface 

In editing this volume we have been assisted by Dr. Tamer Ba~ar, 
Professor Jon Sutinen, and Professor Henry Wan. Most of the papers in 
this volume were presented at the Third Kingston Conference on 
Differential Games and Control Theory, held in June 1978; the theme of 
the conference was dynamic optimization and mathematical economics. 
Financial support from the Office of Naval Research and the University 
of Rhode Island in organizing the conference are gratefully acknow
ledged. Finally, we would like to thank Professor George Leitmann and 
Professor Angelo Miele for making possible the publication of this 
volume in the present series. 

Kingston, Rhode Island Pan-Tai Liu 
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Part I 

Control Theory in Economic Systems 

The dynamic feature of economic systems has become increasingly impor
tant as the economic systems of modern society become more complex. 
The concept of state variables, which summarize the past history of a 
system, is essential for describing problems in economics, while control 
variables play the role of intertemporal decision making. Originally 
developed by engineers and mathematicians, control theory is now widely 
used in economics. 

The importance of control theory in economics can be demonstrated 
by the extent of the literature that has been published, especially during 
the last ten years. Recent advances it;l economic planning, growth theory, 
and other aspects of the theory of firms have resulted from applications of 
modern control techniques. 

The objectives in control of an economic system include optimization, 
stabilization, and a combination of the two. Optimization refers to 
maximization of one or more payoffs, such as profit flow and utility levels 
of capital assets at the end of the planned horizon. Stabilization means 
steering the state of the system (demand, price, laborers, or capital) 
toward a target level by proper choice of the control (investment, produc
tion, or fiscal policy). 

The evolution of an economic system in general can be described by 
accumulation equations, which are equivalent to state equations in con
trol theory. The objective functional is often the integral of an instantane
ous utility function over a planned horizon. The problem is then analyzed 
by standard techniques in optimal control, e.g., the maximum principle 
and dynamic programming. 

While quantitative results that bear some economic significance are 
desirable, they are not always obtainable. In many cases, qualitative 
interpretation of necessary conditions (for optimality) can be obtained 
with a moderate amount of mathematical analysis. A fundamental exam
ple is given by interpreting the adjoint variable in the maximum principle 
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2 Part I: Control Theory in Economic Systems 

as the shadow price, which weighs future accumulation in the system 
against present utility. In general, a certain amount of economic insight is 
needed to "penetrate" a set of mathematical conditions and formulate 
some underlying economic theory. 

A special feature of the control problem in economics is that the 
planned horizon may be infinite. In such a case, the transversality 
condition, which is part of the necessary condition for optimality, has to 
be formulated and utilized in the limiting sense as time goes to infinity. 
Steady-state solutions stand for some kind of dynamic equilibrium in the 
long run. They can be obtained (with the aid of transversality conditions) 
by setting all the derivatives with respect to time equal to zero. This is 
discussed in the papers by Chang and Leland. 

Chang's paper illustrates that the standard optimal control theory can 
be applied to diverse economic problems. Three examples are given: (1) a 
comprehensive energy-planning problem for the government, (2) the 
optimal investment problem for a computer-using firm, in which the 
investment in research and development takes the form of developing 
programs, subroutines, etc., and (3) the optimal saving problem for the 
consumers, in which the impact of changing the initial capital value is 
analyzed in detail. 

Leland's paper applies the conventional control model to a novel 
problem in the theory of firms. Suppose that real-life firms maximize 
some objective functions other than profit. Then for a large class of cases, 
the optimal decisions of the firm approach the optimal policies under 
profit maximization in the long run. This is in contrast to results from 
static models, which indicate that the decisions of a firm with alternative 
objectives differ from the decisions based on profit maximization. 

The theory of finance deals with many aspects of a firm's perfor
mance as a corporation. One of the most important problems is the 
optimal investment and consumption plan over time. This includes (1) the 
amounts of investment and consumption at any time and (2) the alloca
tion of investment among different types of assets. 

Brock's paper contains a survey of his works and related works on 
asset pricing. Starting with an N -process stochastic growth model, de
scribed by stochastic difference equations, he characterizes optimal paths 
generated by optimum policies by means of the principle of optimality. If 
all consumers are assumed to be identical, their optimal consumption-· 
investment decisions imply that production must be carried out in a 
certain fashion for a multigood model, buffeted by random shocks from 
nature. The profit and the stock price of the firms carrying out the 
production processes can then be derived. The limiting distribution of 
capital assets corresponds to the limiting distribution of stock prices. 

For the one-consumer case, the N -process growth model is then 
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converted into an asset-pricing model by introducing competitive rental 
markets for the capital goods and a market for pure rents generated by 
each individual firm. A general economic theory, based on the concept of 
a rational expectation equilibrium, is established and a unique asset
pricing function is indicated to exist. 

In the modeling of an economic system, it is frequently necessary to 
consider uncertainties. One way to do so is to take the probabilistic 
approach of assuming that some parameters in the system are random 
variables or that the system is subject to some disturbances that can be 
described as stochastic processes. We then have a stochastic control 
problem in which the stochastic maximum principle or stochastic dynamic 
programming can be applied. For example, the fluctuation of the stock 
market can be described as a Brownian motion, and the accumulation 
equation for the capital of a firm then becomes an Ito's equation. 
Mathematical theory in control of dynamic systems described by Ito's 
equations has been fairly well established. The application of such a 
theory in economics is currently an area of active research. 

Another way to describe uncertainties is to assume that they are 
bounded in some way but are otherwise unknown. The optimization 
problem is then formulated as one of finding the feedback control from 
within a certain class and minimizing the maximum values over all 
uncertain quantities. This worst-case, nonstochastic approach is often 
more natural and realistic, though the actual computation of a minimax 
control is generally complicated. The same principle can be applied to 
stabilization against uncertain disturbances by minimizing the maximum 
possible values of a Lyapunov function. The paper by Leitmann and Wan 
follows this approach in discussing the stabilization of a macroeconomic 
system that contains some unknown characteristics. They show that under 
some conditions, global, asymptotic stability can be guaranteed, uni
formly over a class of bounded disturbances. If these conditions are 
absent, due either to observational error or to delay, or due to limitation 
of control instruments in their magnitude or scope, the performance of 
the economy can still be improved by adopting certain policies. 

In large firms, pricing and resource allocation are among the most 
important aspects of decisionmaking. Shubik and Sobel define discrete 
time sequential games as multiperson Markov decision processes. They 
use such game models to describe dynamic oligopolistic market situations 
and other competitive resource allocation problems. In addition to ad
dressing themselves to some issues that arise in such models, they discuss 
some principal sufficient conditions for optimality satisfied by various 
dynamic oligopoly models. 
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Asset Pricing in an Economy with 

Production: A "Selective" Survey of Recent 

Work on Asset-Pricing Models 

WILLIAM A. BROCK 

1. Introduction 

This paper surveys an intertemporal general equilibrium theoryof capi
tal asset pricing. It is an attempt to put together ideas from the literatures 
on modern finance, stochastic growth models, and general equilibrium 
theory. In this way we shall obtain a theory capable of addressing general 
equilibrium questions such as the following: What is the impact of an 
increase in the corporate income tax on the relative prices of risky stocks? 
What is the impact of an increase in progressivity of the personal income 
tax on the relative price structure of risky assets? This paper discusses 
only recent literature that is closely related to my own work. Hence it 
should be read with this disclaimer in mind. Furthermore, because of 
space limitations, theorems and proofs will be loosely stated; 

The theory presented here derives part of its inspiration from Merton 
(Ref. 1). However, Merton's intertemporal capital asset-pricing model 
(ICAPM) is not a general equilibrium theory in the sense of Arrow-Debreu. 
That is, the technological sources of uncertainty are not related to the 
equilibrium prices of the risky assets in Merton (Ref. 1). We do that here 
and preserve the empirical tractability of Merton's formulation. 

WILLIAM A. BROCK • Department of Economics, University of Chicago, Chicago, Il
linois, and Department of Economics, University of Wisconsin, Madison, Wisconsin. 
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6 William A. Brock 

One strand of the work surveyed here in the one-consumer case 
modifies the stochastic growth models of Brock and Mirman (Refs. 2, 3), 
Radner (Ref. 4), and Jeanjean (Ref. 5) in order to put a nontrivial 
investment decision into the asset-pricing model of Lucas (Ref. 6). Brock 
(Ref. 7) does this in a way that preserves the empirical tractability of the 
Merton formulation and at the same time determines the risk prices 
derived by Ross (Ref. 8) in his arbitrage theory of capital asset pricing. 
Ross's price of systematic risk k at date t, denoted by Akt and induced by 
the source of systematic risk Skt' is determined by the covariance of the 
marginal utility of consumption with Akt • In this way we discover assump
tions about tastes and technology needed to generate Ross's Akt and show 
exactly how they are determined by the interaction of sources of produc
tion uncertainty and the demand for risky assets. 

Prescott and Mehra (Ref. 9) insert an investment decision into 
Lucas's model (Ref. 6) and develop a dynamic programming recursive 
equilibrium framework that covers many recent models of asset pricing 
such as Brock (Ref. 7) and Lucas (Ref. 6). 

Another line of work is developed in continuous time by Cox, 
Ingersoll, and Ross (Ref. 10), and others. This work seeks to combine 
intertemporal general equilibrium analysis with the pricing theory of 
derivative claims that culminated in the work of Black and Scholes 
(Ref. 11). 

This paper proceeds as follows. Section 1 contains the introduction. 
Section 2 presents an N -process stochastic growth model, which forms 
the basis for the quantity side of the asset-pricing model developed in 
Section 3 for the one-consumer case. It will lead to useful insights for the 
multiconsumer case. 

Section 2 describes optimum paths generated in the N -process model 
by time-independent continuous optimum policy functions a la Bellman. 
Sufficient conditions on tastes and technology are developed that allow 
the derivation of a functional equation that determines the state valuation 
function, with the use of methods adapted from a paper by Koopmans 
(Ref. 12). We also discuss the problem of finding sufficient conditions on 
tastes and technology such that for any initial state the optimum stochas
tic process of investment converges in distribution to a limit distribution 
independent of the initial state. 

For the one-consumer case Section 3 converts the growth model of 
Section 2 into an asset-pricing model by introducing competitive rental 
markets for the capital goods and by introducing a market for claims to 
the pure rents generated by the ith firm, i = 1, 2, ... ,N. Each of the N 
processes is identified with one "firm." Firms payout rentals to consum
ers. The residual is pure rent. Paper claims to the pure rent generated by 
each firm i and a market for these claims are introduced along the line of 
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Lucas (Ref. 6), i.e., both sides of the economy possess subjective distribu
tions on pure rents, capital rental rates, and share prices. Both sides draw 
up demand and supply schedules conditioned on their subjective distribu
tions. Market clearing introduces an objective distribution on pure rents, 
capital rental rates, and share prices. A rational expectations equilibrium, 
abbreviated R.E.E., is defined by the requirement that the objective 
distribution equal the subjective distribution at each date. 

Section 3 shows (for the one-consumer case), with the use of recent 
results of Benveniste and Scheinkman (Ref. 13), that the quantity side of 
an R.E.E. is identical to the quantity side of the N -process growth model 
developed in Section 2. The key idea used is the Benveniste-Scheinkman 
result that for utility functions that are additively separable over time, the 
standard transversality condition at infinity is necessary as well as suffi
cient for an infinite-horizon concave programming problem. This theory 
is used to characterize optimal plans by each consumer. 

The financial side of the economy is now easy to develop. A unique 
asset-pricing function for stock i of the form Pi (y) is indicated to exist by 
use of a contraction mapping argument along the line of Lucas (Ref. 6), 
where y describes the state of the economy (which may include its 
history). 

Section 4 reviews some other asset-pricing models. The first model, 
developed by Becker (Ref. 14), is a deterministic version of the one-con
sumer model developed in Section 3. He shows that if each consumer's 
utility function is a discounted sum of period utilities with time
independent discount factor and time-independent period utility function, 
then the consumer that discounts the future the least eventually ends up 
with all the capital stock. 

The next paper, by Magill (Ref. 15), applies the recent work of Bismut 
(Ref. 16) on continuous-time stochastic optimal control to economic 
dynamics. Magill's paper uses Bismut's work to characterize rational 
expectations equilibria in an economic world driven by Ito processes. 

An important class of continuous-time stochastic asset-pricing mod
els is reviewed in Section 5. These models, built by Cox, Ingersoll, and 
Ross (Ref. 10; hereafter CIR) are general equilibrium versions of Mer
ton's intertemporal capital asset-pricing model (Ref. 1). CIR also add a 
class of derivative claims and develop generalized Black-Scholes (Ref. 11) 
partial differential equations for the prices of these claims. 

Finally, Section 6 contains a summary. 

2. The Optimal Growth Model 

Since the optimal growth model is studied in detail in Brock (Ref. 7), 
we shall be brief where possible. 
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The model is given by the following: 

Maximize 
00 

E1 L (3'-1 U(C,), 
,=1 

subject to 
N 

Ct+1 + Xt+1 - Xt = L [g;(X;" 't) - 5;X;t], 
i=l 

N 

X = 'X t ~ it' i = 1, 2, ... , N, t = 1,2, ... , 
i=l 

t = 1, 2, ... , 

(i = 1,2, ... , N), '0 historically given, 

(1) 

(2) 

(3) 

(4) 

(5) 

where E 1, {3, U, C" :\1, gi' Xit, 't, 5; denote, respectively, mathematical 
expectation conditioned at time 1, discount factor on future utility, utility 
function of consumption, consumption at date t, capital stock at date t, 
production function of process i, capital allocated to process i at date t, 
random shock which is common to all processes i, and depreciation rate 
for capital installed in process i. 

The space of {Ct };:1, {Xt };'=1 over which the maximum is being taken 
in (1) needs to be specified. Obviously decisions at date t should be based 
only on information at date t. In order to make the choice space 
precise some formalism is needed. We borrow (copy) from Brock and 
Majumdar (Ref. 17) at this point. 

The environment will be represented by a sequence {'t};'=1 of real 
vector-valued random variables which will be assumed to be indepen
dently and identically distributed. The common distribution of 't is given 
by a measure t.L: OO(Rm) ~ [0,1], where OO(R m) is the Borel u-field of 
Rm. In view of a well-known one-to-one correspondence [see, e.g., Loeve 
(Ref. 18, pp. 230-231)], we can adequately represent the environment as 
a measure space (fl, [JJi, v), where fl is the set of all sequences of real 
m-vectors, [JJi is the u-field generated by cylinder sets of the form 
ll;,= 1 A, where 

t = 1,2, ... , 
and 

At = Rm 

for all but a finite number of values of t. Also v (the stochastic law of the 
environment) is simply the product probability induced by t.L (given the 
assumption of independence). 
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The random variables r, may be viewed as the tth coordinate 
function on n, i.e., for any w = {Wt};'~l E n, r,(w) is defined by 

r,(w) = WI' 

We shall refer to w as a possible state of the environment (or an 
environment sequence) and to w, as the environment at date t. In what 
follows, @it is the (J'-field guaranteed by partial histories up to period t 
(i.e., the smallest (J'-field generated by cylinder sets of the form I1:;'~1 A,. 
where A,. is in OO(Rm) for all t and A,. = Rm for all T > t). The (J'-field 
@it contains all the information about the environment that is available at 
date t. 

To express precisely the fact that decisions c" x, depend only on 
information available when the decisions are made, we simply require 
that c" X. be measurable with respect to @it. 

Formally the maximization in (1) is taken over all stochastic proces
ses {C'};'~l' {X'};'~l that satisfy (2)-(5) and such that for each t = 
1, 2, ... , c,' x, are measurable @it. Call such processes admissible. 

Existence of an optimum {C'};'~l' {X'};'~l may be established by 
imposing an appropriate topology fT on the space of admissible processes 
such that the objective (1) is continuous in this topology and the space of 
admissible processes is fT -compact. While it is beyond the scope of this 
article to discuss existence, presumably a proof can be constructed along 
the lines of Bewley (Ref. 19). 

The notation almost makes the working of the model self
explanatory. There are N different processes. At date t it is decided how 
much to consume and how much to hold in the form of capital. It is 
assumed that capital goods can be costlessly transformed into consump
tion goods on a one-for-one basis. After it is decided how much capital to 
hold, then it is decided how to allocate the capital across the N processes. 
After the. allocation is decided, nature reveals the value of r" and g;(~" r,) 
units of new production are available from process i at the end of period 
t. But 5ixi, units of capital have evaporated at the end of t. Thus net new 
produce is gi(Xit, r,) - 5ixi, from process i. The total produce available to 
be divided into consumption and capital stock at date t + 1 is given by 

where 

N N 

L [gi(X;" r,) - 5i~'] + X. = L [gi(~" r,) + (1 - 5i )Xi,] 
i~l i~l 

N 

== L /;(~" r,) == Yt+l> 
i~l 

(6) 

(7) 

denotes the total amount of produce emerging from process i at the end 
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of period t. The produce Yt+l is divided into consumption and capital 
stock at the beginning of date t + 1, and so on. 

Note that we are assuming that it is costless to install capital into 
each process i and that it is costless to allocate capital across processes at 
the beginning of each date t. 

The objective of the optimizer is to maximize the expected value of 
the discounted sum of utilities over all consumption paths and capital 
allocations that satisfy (2)-(5). 

To obtain sharp results we will place restrictive assumptions on this 
problem. We collect the basic working assumptions in one place. 

Assumption 2.1. The functions u(·), h(.) are all concave, increasing, 
and twice continuously differentiable. 

Assumption 2.2. The stochastic process {rt};'~l is independently and 
identically distributed. Each rt : (O,~, /.L) --. Rm, where (O,~, /.L) is a 
probability space. Here ° is the space of elementary events, ~ is the 
u-field of measurable sets with respect to /.L, and IL is a probability 
measure defined on subsets B s;;; 0, B E ~. Furthermore the range of r" 
rt(O), is compact. 

Assumption 2.3. For each {XilW~l' r1 the problem (1) has a unique 
optimal solution (unique up to a set of realizations of {rt } of measure 
zero). 

Notice that Assumption 2.3 is implied by Assumption 2.1 and strict 
concavity of u, {J;}f~l' Rather than try to find the weakest possible 
assumptions sufficient for uniqueness of solutions to (1), it seems simpler 
to reveal the role of uniqueness in what follows by simply assuming it. 
Furthermore since we are not interested here in the study of existence of 
optimal solutions, we have simply assumed existence also. 

By Assumption 2.3 we see that to each output level Yt the optimum 
c" Xt, Xi!, given Yt, may be written 

Xt = h(Yt), (8) 

The optimum policy functions g(.), h('), h;(-) do not depend on t because 
the problem given by (1)-(5) is time stationary. 

Another useful optimum policy function may be obtained. Given Xt 

and rt , Assumption 2.3 implies that the optimal allocation {xit}f~l and the 
next period's optimal capital stock Xt+1 is unique. Furthermore these may 
be written in the form 

(9) 

(10) 
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Equations (9) and (10) contain rt - 1 and rt respectively because the 
allocation decision is made after rt - 1 is known but before rt is revealed, 
while the capital-consumption decision is made after Yt+l is revealed, i.e., 
after rt is known. 

Equation (10) looks very much like the optimal stochastic process 
studied by Brock and Mirman (Ref. 2) and by Mirman and Zilcha 
(Refs. 20-22). For the case N = 1 the stochastic difference equation (10) 
converges in distribution to a unique limit distribution independent of 
initial conditions (Refs. 2, 3). The same result may be obtained for our 
N-process model (Ref. 7). The following result gives conditions for neces
sity of the transversality condition at 00. 

Result 2.1. Assume Assumption 2.1. Also assume that units of 
utility may be chosen so that u(c) 2: 0, for all c. Furthermore assume that 
along optima 

Ed3 t- 1 U(Yt) - 0 as t _ 00. 

If {Ct};'~b {Xt};'~I' {Xit };:I, t = 1,2, ... , is optimal, then the following 
conditions must be satisfied: 

For each i, t 

lim E 1{(3t-l U'(Ct)xt} = O. 
t--+oo 

Proof. See Brock (Ref. 7). 

Here U(y) is the maximum of (1) given y. 

2.1. The Price of Systematic Risk 

(lOa) 

(lOb) 

(10c) 

o 

Steve Ross (Ref. 8) produced a theory of capital asset pricing show
ing that the assumption that all systematic risk-free portfolios earn the 
risk-free rate of return plus the assumption that asset returns are gener
ated by a K-factor model lead to the existence of "prices" Ao, AI, 
A2 , ••• ,AK on mean returns and on each of the K factors. These prices 
satisfied the property that the expected return Ef; == a; on each asset i 
was a linear function of the standard deviation of the returns on asset i 
with respect to each factor k, i.e., 

K 

a; = Ao + L Akbk;, 
k~1 

i = 1,2, ... , N, (11) 


